行业资讯
AI news by Ai Studio
三个模型对CNN结构演变进行总结
导言: 自2012年AlexNet在ImageNet比赛上获得冠军,卷积神经网络逐渐取代传统算法成为了处理计算机视觉任务的核心。 在这几年,研究人员从提升特征提取能力,改进回传梯度更新效果
一文了解计算机视觉中的特征金字塔技术总结
前言:特征金字塔是目前用于目标检测、语义分割、行为识别等方面比较重要的一个部分,对于提高模型性能具有非常好的表现。不同大小的目标都经过了相同的降采样比例后会出现较大的语义代沟,最常见的表现就是小目标检测精度比较低
一文了解Siamese network
前言:本文介绍了Siamese (连体)网络的主要特点、训练和测试Siamese网络的步骤、Siamese网络的应用场合、Siamese网络的优缺点、为什么Siamese被称为One-shot分类,以及Siamese的损失函数
行人重识别中的第一个anchor-free模型
前言:本文针对anchor-free模型用于行人搜索中会出现三个不对齐问题:Scale misalignment,Region misalignment,Task misalignment提出了相应的解决方案,进一步提出了一个更简单更有效的anchor-free模型--AlignPS
一文了解文字识别OCR开源框架的对比
前言:OCR文字识别在目前有着比较好的应用,也出现了很多的文字识别软件,但软件是面向用户的。对于我们技术人员来说,有时难免需要在计算机视觉任务中加入文字识别,如车牌号识别,票据识别等,因此软件对我们是没用的,我们需要自己实现文字识别
注意力机制技术总结:如何应用在计算机视觉上
前言:注意力机制在视觉上是非常重要的部分,这方面的综述、总结有很多。为了本文总结的全面性,我基本都看了一遍。然而这些综述要么面面俱到,对所有内容都非常详细地阐述,包括一些非常不常用的,过时的论文或结构;要么没分清重点,有些内容跟论文有关,但跟注意力无关,这些文章也把这些内容总结到里面
一个高效的金字塔切分注意力模块PSA
前言:前面分享了一篇《继SE,CBAM后的一种新的注意力机制Coordinate Attention》,其出发点在于SE只引入了通道注意力,CBAM的空间注意力只考虑了局部区域的信息,从而提出考虑全局空间信息的注意力机制
针对BN的归一化方法总结
前言:归一化相关技术已经经过了几年的发展,目前针对不同的应用场合有相应的方法,在本文将这些方法做了一个总结,介绍了它们的思路,方法,应用场景。主要涉及到:LRN,BN,LN, IN, GN, FRN, WN, BRN, CBN, CmBN等
一文了解什么是深度学习
编者荐语深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)
十大PyTorch最常用的转换函数
介绍Pytorch是一个深度学习框架,广泛用于图像分类、分割、目标识别等各种任务。在这种情况下,我们必须处理各种类型的数据。很可能在大多数情况下,数据可能不是我们所需要的格式。PyTorch转换就是救星